On Lie Group Classification of Second{order Ordinary Difference Equations
نویسنده
چکیده
منابع مشابه
On the Linearization of Second-Order Differential and Difference Equations
This article complements recent results of the papers [J. Math. Phys. 41 (2000), 480; 45 (2004), 336] on the symmetry classification of second-order ordinary difference equations and meshes, as well as the Lagrangian formalism and Noether-type integration technique. It turned out that there exist nonlinear superposition principles for solutions of special second-order ordinary difference equati...
متن کاملClassification of Second-order Ordinary Differential Equations Admitting Lie Groups of Fibre-preserving Point Symmetries
We use Elie Cartan's method of equivalence to give a complete classification, in terms of differential invariants, of second-order ordinary differential equations admitting Lie groups of fibre-preserving point symmetries. We then apply our results to the determination of all second-order equations which are equivalent, under fibre-preserving transformations, to the free particle equation. In ad...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملLow Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations
A direct approach to non-linear second-order ordinary differential equations admitting a superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension not exceeding three. This procedure allows us to describe generic types of second-order ordinary differential equations subjected to some constraints and admitting a given Lie algebra as Vessiot-Guldberg-Lie algebr...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کامل